如果用php的+-*/计算浮点数的时候,可能会遇到一些计算结果错误的问题,比如echo intval( 0.58*100 );会打印57,而不是58,这个其实是计算机底层二进制无法精确表示浮点数的一个bug。为解决这个问题基本上大部分语言都提供了精准计算的类库或函数库,比如php有BC高精确度函数库。

例子

<?php    
$f = 0.58;   
var_dump(intval($f * 100)); //为啥输出57?>

原因说明

浮点数, 以64位的长度(双精度)为例, 会采用1位符号位(E), 11指数位(Q), 52位尾数(M)表示(一共64位).

符号位:最高位表示数据的正负,0表示正数,1表示负数。

指数位:表示数据以2为底的幂,指数采用偏移码表示

尾数:表示数据小数点后的有效数字.

这里的关键点就在于, 小数在二进制的表示, 关于小数如何用二进制表示, 大家可以百度一下, 我这里就不再赘述, 我们关键的要了解, 0.58 对于二进制表示来说, 是无限长的值(下面的数字省掉了隐含的1)..

  0.58的二进制表示基本上(52位)是: 00101000111101011100001010001111010111000010100011110.57的二进制表示基本上(52位)是: 001000111101011100001010001111010111000010100011110而两者的二进制, 如果只是通过这52位计算的话,分别是:

  0.58 -> 0.579999999999999960.57 -> 0.5699999999999999至于0.58 * 100的具体浮点数乘法, 我们不考虑那么细, 有兴趣的可以看(Floating point), 我们就模糊的以心算来看… 0.58 * 100 = 57.999999999

  那你intval一下, 自然就是57了….

  可见, 这个问题的关键点就是: “你看似有穷的小数, 在计算机的二进制表示里却是无穷的”

  显然简单的十进制分数如同 0.1 或 0.7 不能在不丢失一点点精度的情况下转换为内部二进制的格式。这就会造成混乱的结果:例如,floor((0.1+0.7)*10) 通常会返回 7 而不是预期中的 8,因为该结果内部的表示其实是类似 7.9999999999…。

  这和一个事实有关,那就是不可能精确的用有限位数表达某些十进制分数。例如,十进制的 1/3 变成了 0.3333333. . .。

  所以永远不要相信浮点数结果精确到了最后一位,也永远不要比较两个浮点数是否相等。如果确实需要更高的精度,应该使用任意精度数学函数或者 gmp 函数

精度计算方法

为解决上面问题,可以用精度计算方法

bcadd — 将两个高精度数字相加

bccomp — 比较两个高精度数字,返回-1, 0, 1

bcdiv — 将两个高精度数字相除

bcmod — 求高精度数字余数

bcmul — 将两个高精度数字相乘

bcpow — 求高精度数字乘方

bcpowmod — 求高精度数字乘方求模,数论里非常常用

bcscale — 配置默认小数点位数,相当于就是Linux bc中的”scale=”

bcsqrt — 求高精度数字平方根

bcsub — 将两个高精度数字相减

php BC高精确度函数库包含了:相加,比较,相除,相减,求余,相乘,n次方,配置默认小数点数目,求平方。这些函数在涉及到有关金钱计算时比较有用,比如电商的价格计算。

注意 : 精度计算是舍去法保留n位小数